Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis

نویسندگان

  • Nicole M. Gaudelli
  • Craig A. Townsend
چکیده

Nonribosomal peptide synthetases are versatile engines of bioactive natural product biosynthesis that function according to the multiple carrier thiotemplate mechanism. C-terminal thioesterase (TE) domains of these giant modular proteins typically catalyze product release by hydrolysis or macrocyclization. We now report an unprecedented, dual-function TE that is involved in the biosynthesis of nocardicin A, which is the paradigm monocyclic β-lactam antibiotic. Contrary to our expectation, a stereodefined series of potential peptide substrates for the nocardicin TE domain failed to undergo hydrolysis. The stringent discrimination against peptide intermediates was overcome by prior monocyclic β-lactam formation at an L-seryl site. Kinetic data are interpreted such that the TE domain acts as a gatekeeper to hold the assembling peptide on an upstream domain until β-lactam formation takes place and then rapidly catalyzes epimerization, which has not been observed previously as a TE catalytic function, and thioesterase cleavage to discharge a fully fledged pentapeptide β-lactam harboring nocardicin G, the universal precursor of the nocardicins.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How allosteric control of Staphylococcus aureus penicillin binding protein 2a enables methicillin resistance and physiological function.

The expression of penicillin binding protein 2a (PBP2a) is the basis for the broad clinical resistance to the β-lactam antibiotics by methicillin-resistant Staphylococcus aureus (MRSA). The high-molecular mass penicillin binding proteins of bacteria catalyze in separate domains the transglycosylase and transpeptidase activities required for the biosynthesis of the peptidoglycan polymer that com...

متن کامل

Chemical Genetic Analysis and Functional Characterization of Staphylococcal Wall Teichoic Acid 2-Epimerases Reveals Unconventional Antibiotic Drug Targets.

Here we describe a chemical biology strategy performed in Staphylococcus aureus and Staphylococcus epidermidis to identify MnaA, a 2-epimerase that we demonstrate interconverts UDP-GlcNAc and UDP-ManNAc to modulate substrate levels of TarO and TarA wall teichoic acid (WTA) biosynthesis enzymes. Genetic inactivation of mnaA results in complete loss of WTA and dramatic in vitro β-lactam hypersens...

متن کامل

Antibiotic residues and aflatoxin M1 contamination in milk powder used in Tehran dairy factories, Iran

BACKGROUND: The presence of aflatoxin M1 (AFM1) andantibiotic residues in milk and milk products is a public healthconcern. Milk and milk powder have the potential forintroducing AFM1 and antibiotic into human diet. In recentyears, milk powder has been used on a large scale in dairyfactories. Consequently, antibiotic residues and aflatoxincontamination control in these products has gained impor...

متن کامل

Evolution of fungal β-lactam biosynthesis gene clusters

Filamentous fungi are microorganisms of great biotechnological interest due to their ability to synthesize a variety of bioactive secondary metabolites including β-lactam antibiotics, such as penicillins and cephalosporins. Hydrophobic (with aromatic side chains) penicillins are only produced by fungi, mainly Penicillium chrysogenum and Aspergillus (Emericella) nidulans, whereas hydrophilic cep...

متن کامل

Consecutive radical S-adenosylmethionine methylations form the ethyl side chain in thienamycin biosynthesis.

Despite their broad anti-infective utility, the biosynthesis of the paradigm carbapenem antibiotic, thienamycin, remains largely unknown. Apart from the first two steps shared with a simple carbapenem, the pathway sharply diverges to the more structurally complex members of this class of β-lactam antibiotics, such as thienamycin. Existing evidence points to three putative cobalamin-dependent ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014